
Learning Generalizable Feature Fields for
Mobile Manipulation

Ri-Zhao Qiu∗1, Yafei Hu∗1,2, Ge Yang3,4, Yuchen Song1, Yang Fu1, Jianglong Ye1, Jiteng Mu1, Ruihan Yang1,
Nikolay Atanasov1, Sebastian Scherer2, Xiaolong Wang1

∗equal contribution
1UC San Diego, 2CMU, 3MIT, 4IAIFI
https://geff-b1.github.io

(a) Lab

(c) Community Kitchen

(b) Meeting Room

Avoiding a passer-by

Searching receptacles

Entering a meeting room

Unified 
Implicit 
World 

Representation

Downstream
Mobile 

Manipulation 
Tasks

Navigating in a lab

Finding hand lotion on table

Going pass a narrow Doorway

Picking up a dog toy

Manipulating Objects

Grasping the hand lotion

(d) Car Trunk in Parking Lot

(e) Lawn

Approaching Car Trunk

… or staying off the lawnGoing over lawn to object

Grabbing the surface cleaner

Fetching the toy duck

Fig. 1: GeFF, Generalizable Feature Fields, provide unified implicit scene representations for both robot navigation and
manipulation in real-time. We demonstrate the efficacy of GeFF on open-world mobile manipulation and semantic-aware
navigation under diverse real-world scenes ((a) working in a lab where a person walks in, (b) entering a meeting room with
narrow entrance, (c) operating in a community kitchen with various furniture, (d) grasping objects from a car trunk in a parking
lot, and (e) semantic-aware navigation near a lawn outside of a building). The visualization of the feature fields is obtained by
PCA of neural-rendered features. For best illustration, we animate feature fields built in real-time on the website.

Abstract—An open problem in mobile manipulation is how to
represent objects and scenes in a unified manner so that robots
can use it both for navigating in the environment and manipu-
lating objects. The latter requires capturing intricate geometry
while understanding fine-grained semantics, whereas the former
involves capturing the complexity inherited to an expansive
physical scale. In this work, we present GeFF (Generalizable
Feature Fields), a scene-level generalizable neural feature field
that acts as a unified representation for both navigation and
manipulation that performs in real-time. To do so, we treat
generative novel view synthesis as a pre-training task, and then
align the resulting rich scene priors with natural language via

CLIP feature distillation. We demonstrate the effectiveness of this
approach by deploying GeFF on a quadrupedal robot equipped
with a manipulator. We evaluate GeFF’s ability to generalize to
open-set objects as well as running time when performing open-
vocabulary mobile manipulation in dynamic scenes.

I. INTRODUCTION

Building a personal robot that can assist with common
chores has been a long-standing goal of robotics [1, 2, 3].
This paper studies the task of open-vocabulary navigation
and picking, where a robot needs to navigate through diverse
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scenes to pick up objects based on language instructions.
This task, while seemingly easy for humans, remains quite
challenging for autonomous robots. We humans achieve such
tasks by understanding the layout of rooms and the affor-
dances of objects without explicitly memorizing every aspect.
However, when it comes to autonomous robots, there does not
exist a unified scene representation that captures geometry and
semantics for both navigation and manipulation tasks.

Recent approaches in navigation seek representations such
as geometric maps (with semantic labels) [4, 5] and topolog-
ical maps [6, 7] to handle large-scale scenes, but are not well
integrated with manipulation requirements. Manipulation, on
the other hand, often relies on continuous scene representation
such as implicit surfaces or meshes [8] to compute precise
grasping poses, which are not typically encoded in navigation
representations. More importantly, interpreting semantic task
instructions requires grounding of concepts with respect to
geometric and semantic features of the environment. Such
discrepancy in representations leads to unsatisfactory perfor-
mance [9] in complex tasks that involve multiple visuomotor
skills. Performing coherent open-vocabulary perception for
both navigation and manipulation remains a significant chal-
lenge.

To this end, we present a novel scene-level Generalizable
Feature Field (GeFF) as a unified representation for navi-
gation and manipulation. This representation is trained with
neural rendering using Neural Radiance Fields (NeRFs) [10].
Instead of fitting a single NeRF with a static scene, our
representation can be updated in real-time as the robot moves
and the surroundings change. Inspired by recent works in
Generalizable NeRFs (Gen-NeRFs) [11, 12], we train our
representation with an encoder, which allows one feed-forward
pass in the network to update the scene representation dur-
ing inference. Besides being a unified representation, GeFF
stands out with two more advantages: (i) GeFF is able to
decode multiple 3D scene representations from a posed RGB-
D stream, including SDF, mesh, and pointcloud, and (ii)
by performing feature distillation from a pre-trained Vision-
Language Model (VLM), e.g., CLIP [13], the representation
not only contains geometric information but also language-
conditioned semantics. These three key factors mitigate the
discrepancy as discussed in the previous paragraph.

We demonstrate GeFF using a quadrupedal mobile ma-
nipulator to execute object discovery and manipulation tasks
specified using language instructions. Our mobile manipula-
tion system works as follows. First, the robot scans part of
the scene which includes the target objects using an RGB-D
camera and constructs a 3D representation using GeFF. At the
same time, GeFF enables constructing a 3D feature field via
feature distillation. The robot can then identify the goal object
by searching in the feature field given language instructions.
With the 3D map and an object goal, the robot can perform
semantic-aware planning for navigation to reach and grasp
target objects. As the robot moves in the scene, the RGB-
D streams are fed into GeFF to extract 3D semantic features,
and the pre-computed feature field is updated in real-time.

This brings two benefits: (i) when the object arrangement (goal
object or surroundings) changes in the scene, we can update
the map in real-time and perform re-planning; (ii) as the robot
moves closer to the object, GeFF can provide a more detailed
description of the object given higher resolution inputs, which
is essential for grasping.

We experiment with a Unitree B1 quadrupedal robot where
a Z1 robot arm is attached on top, as shown in Fig. 1.
We perform mobile manipulation with this robot in diverse
environments where the robot needs to navigate to different
receptacles, avoid dynamic obstacles, plan semantically to
stay on walkways away from the lawn, and search and pick
up objects in an open-vocabulary manner. We show that
using the GeFF representation significantly improves over
baselines using standard NeRF with feature distillation (e.g.,
LeRF [14]): GeFF achieves an average 52.9% success rate
while LeRF achieves an average 30.7% success rate in mobile
manipulation. We further perform ablations in simulation to
validate the effectiveness of our approach. We plan to release
the pre-trained models and the source code.

II. RELATED WORK

Generalizable Neural Radiance Fields. Generalizable
Neural Radiance Fields extend conventional Neural Radiance
Fields’ ability to render highly-detailed novel views to scenes
that come with just one or two images [11, 15, 16, 17, 18,
19, 20, 12]. They replace the time-consuming optimization
of weights for each scene with a single feed-forward process
through a network. Existing works [19, 21, 22] mainly focus
on synthesizing novel views. Our focus is to use novel view
synthesis via generalizable neural fields as a generative pre-
training task. At test time, we use the produced network for
real-time semantic and geometric inference in a robotic mobile
manipulation setting.

Feature Distillation in NeRF Beyond just synthesizing
novel views, recent works [14, 23, 24, 12] have also attempted
to combine NeRF with 2D features via feature distillation
from 2D vision foundation models [13, 25, 26, 27] to 3D
space to empower neural fields with semantic understanding
of objects [23, 24, 12], scenes [14, 28] and downstream robotic
applications [29, 28]. Nonetheless, these works cannot be
easily adapted for mobile manipulation due to the expensive
per-scene optimization scheme [14, 23] or restrictions to
object-level representations [12]. Most closely related to our
work, LERF [14] and F3RM [28] distill CLIP features to
create scene representations that can be queried with natural
language. F3RM adapts the feature fields for tabletop manipu-
lation. Nonetheless, both LERF and F3RM require expensive
per-scene optimization, which takes up to 40 minutes [14]
to create a scene-level representation. Such an inefficiency
hinders practical downstream applications on mobile robots.
In stark contrast, our GeFF runs in real-time on mobile robots.

Object Navigation and Mobile Manipulation. Object
navigation involves controlling a robot to navigate in the
environment and to find target objects. Existing object nav-
igation methods tackle this problem via modular approaches,
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Fig. 2: Pre-trained as a generalizable NeRF encoder, GeFF provides unified scene representations for robot tasks from onboard
RGB-D stream, offering both real-time geometric information for planning and language-grounded semantic query capability.
Compared to LERF [14], GeFF runs in real-time without costly per-scene optimization, which enables many potential robotics
applications. We demonstrate the efficacy of GeFF on open-world language-conditioned mobile manipulation. Feature
visualizations are done by running PCA on high-dimensional feature vectors and normalizing the 3 main components as RGB.

using vision and language foundation models, scene graphs,
etc. [30, 31, 32, 33, 34, 35, 36, 37], or via learning-based meth-
ods [38, 39, 40, 41, 42]. However, most end-to-end learning-
based methods were only tested in constrained simulation
environments. In addition, recently Gervet et al. [31] found
that these end-to-end methods show poor generalization in
real-world environments. Inspired by this finding, we follow
the modular approach and combine GeFF with a classical mo-
tion planner and controller for real-world mobile manipulator
deployment.

Beyond navigating to object goals, mobile manipulation
requires a synergistic combination of navigation and ma-
nipulation [43, 44, 45, 9, 46, 47]. Previous works include
learning-based methods [44, 48, 49, 45, 50, 51], and classical
approaches based on motion planning [52, 53] or visual
servoing [54]. Nonetheless, these works are constrained to a
closed-set setting, meaning that they only work with a pre-
defined range of objects that have seen during training. In
contrast, our work operates on an open set of objects in both
manipulation (specifying objects to manipulate) and navigation
(instructing robots to avoid objects). Most recent works like
HomeRobot [9] show open-vocabulary capabilities but have
demonstrated only relative low success rate in small-scale
real-world environments. In comparison with our approach,
existing techniques lack a rich and unified 3D semantic
and geometric representation of the environment to support
integrated robot navigation and manipulation.

Open-Vocabulary Scene Representations. There have
been some recent works [55, 56, 33, 57, 58] that leverage
2D foundation vision models to build open-vocabulary 3D
representations. These methods project predictions from large-
scale models such as CLIP [13] or SAM [59] directly onto
explicit representations (point-based or voxel-based). As the
number of features stored at each location increases, these
explicit representation-based methods become harder to scale

and are mostly limited to room-scale environment. GeFF, on
the other hand, builds a latent and unified representation that
conceptually scale to larger environments. A concurrent work,
OK-Robot [56], uses voxel-based representations to perform
open-vocabulary mobile manipulation, which is most related to
our work among existing methods. In turn, GeFF demonstrates
ability to operate in both room-scale environment and larger-
scale outdoor environment with the its perceptive capability
and traversability of quadruped robots.

III. PROBLEM FORMULATION AND BACKGROUND

A. Problem Statement
Let Ω be the space of RGB-D images. Consider N posed

RGB-D frames D = {(Fi,Ti)}Ni=1 obtained from a mobile
robot equipped with an RGB-D camera, where Fi ∈ Ω is the i-
th RGB-D frame and Ti ∈ SE(3) is the camera extrinsics. Our
goal is to create a unified scene representation that captures
geometric and semantic properties for robot navigation and
manipulation from D. More specifically, we aim to design
an encoding function fenc(·) : (Ω × SE(3))N 7→ RN×C

that compresses D to a latent representation, and decoding
functions ggeo(·, ·) : R3×RN×C 7→ Rm and gsem(·, ·) : R3×
RN×C 7→ Rn that decode the latents into different geometric
and semantic features at different positions in 3D space. Here,
C, m, and n are the dimensions of the latent representation,
geometric feature, and semantic feature, respectively. These
geometric and semantic features can then serve as the input
to the downstream planner. We aim to design these three
functions to meet the following criteria.

• Unified. The encoded scene representation fenc(D) is
sufficient for both geometric and semantic query (i.e.,
ggeo and gsem are conditioned on D only via fenc(D)).

• Incremental. The scene representation supports efficient
incremental addition of new observations, (i.e., fenc(D1∪
D2) = fenc(D1)⊕ fenc(D2))



Fig. 3: Generalizable Feature Fields Acquire Geometric
and Semantic Priors. RGB images are input views from
ScanNet [60]. Color images are PCA visualizations of fea-
ture volume projected to the input camera view encoded by
an RGB-D Gen-NeRF [61] encoder. Note how semantically
similar structures acquire similar features.

• Continuous. To support hierarchical, coarse-to-fine-
grained robotic motion planning and control, the query
function should be continuous and queryable at any
coordinate (e.g., ggeo(x, fenc(D)), where x = (x, y, z)
is a location in 3-D space).

• Implicit. The encoded latents fenc(D) should be orga-
nized in a sparse implicit representation to enable more
efficient scaling to large scenes than storing D.

• Open-world. The semantic knowledge from gsem should
be open-set and aligned with language, so the robot can
perform open-world perception. That is, the feature vector
output from gsem lies in a multi-modality that aligns text
and vision (e.g., CLIP [13]).

In this paper, we build GeFF upon generalizable NeRFs to
satisfy all of these requirements.

B. Background: NeRF and Generalizable NeRF

Given a coordinate x ∈ R3 and a unit-vector viewing direc-
tion d ∈ S2, the original NeRF [10] adopts two parameterized
networks, a density mapping σθ(x) : R3 → R[0, 1], which
predicts the probability that x is occupied, and a color mapping
cω(x,d) : R3×S2 → R3 which maps coordinate and viewing
direction to color.

Consider a ray r from a camera viewport with camera
origin o and direction d, which is conditioned by the camera
extrinsics T and intrinsics K. NeRF estimates color along r
by

Ĉ(r) =

∫ tf

tn

T (t)αθ(r(t))cω(r(t),d)dt , (1)

where tn and tf are minimum and maximum distances bound-
ing depth, T (t) = exp(−

∫ t

tn
σθ(s)ds) is the transmittance

which denotes the observed occupancy so far to avoid ren-
dering voxels behind objects, and αθ(r(t)) being the opacity
value at r(t) (original NeRF [10] uses αθ = σθ).

NeRF then optimizes θ and ω w.r.t. color by

Lcol(θ, ω) =
∑
r∈R

∣∣∣∣∣∣C(r)− Ĉ(r)
∣∣∣∣∣∣2
2
, (2)

where C(r) denotes the ground truth color of the ray r,
and R is a set of randomly sampled ray for training. Note
that the training process starts from scratch for every scene
and may take hours. To avoid costly per-scene optimization,
generalizable NeRFs [11, 12] propose to condition the novel
view on input frames instead of optimizing the underlying

parameters. During its training time, generalizable NeRFs
learn to incorporate scene priors into its encoder. More
concretely, the occupancy and the radiance networks are given
by

σθ(x,D) = gσ(x, fenc(D)) (3)
cω(x,d,D) = gc(x,d, fenc(D)) , (4)

where gσ and gc are MLPs that predict density and color,
fenc being a neural encoder. Note that parameters are learned
during pre-training. During the testing stage, novel views are
efficiently rendered in a single-pass manner.

IV. GEFF FOR MOBILE MANIPULATION

We describe our approach, Generalizable Feature Fields
(GeFF), and ways we apply it to mobile manipulation tasks
in the following subsections. An overview of our method is
shown in Fig. 2.

A. Learning Scene Priors via Neural Synthesis

Generalizable neural radiance fields acquire rich geometric
and semantic priors by learning to synthesize novel views in
many scenes [61, 62, 12]. To illustrate this point, we offer a
motivating example in Fig. 3, where we render the intermedi-
ate feature volume from an RGB-D Gen-NeRF encoder [61]
trained to synthesize novel views on the ScanNet [60] dataset.
The colors correspond to the principal components of the
latent features. We observe separations between objects and
the background, despite no explicit semantic supervision were
provided during training (only the RGB-D views and the
camera poses were available). This example highlights the
potential of using neural synthesis as a generative pre-training
task for learning scene priors.

We propose two types of training signals using both the 2D
foundation models and depth to provide supervision.

Supervision (i): Language-Alignment via Feature Dis-
tillation. Although we have shown that Gen-NeRF encoders
implicitly encode geometric and semantic cues, the repre-
sentation is less useful if it is not aligned to other feature
modalities, such as language. In order to further enhance the
representation capability of GeFF, we propose to use knowl-
edge distillation to transfer learned priors from 2D vision
foundation models and align the 3D representations with them.
To the best of our knowledge, GeFF is the first approach
that combines scene-level generalizable NeRF with feature
distillation. In stark contrast to previous attempts [23, 14, 12],
GeFF both works in relatively large-scale environments and
runs in real-time, making it a powerful perception method for
mobile manipulation.

Specifically, we build a feature decoder gsem(x, fenc(D))
on top of the latent representation, which maps a 3D coor-
dinate to a feature vector. The output of gsem is trained to
be aligned with the embedding space of a teacher 2D vision
foundation model, termed fteacher. Note that gsem is non-
directional. Intuitively, the semantic properties of an object
should be view-independent (e.g., a cup is a cup regardless of



the viewing directions). Similar to color rendering in Eq. 1,
we can render 2D features for pre-training via

F̂(r) =

∫ tf

tn

T (t)α(r(t))gsem(r(t), fenc(D))dt . (5)

To further enhance the fidelity of the 3D scene representa-
tion, we use the 2D features of the input views computed by
the teacher model as an auxiliary input to fenc, which is

fenc(D) = CONCAT
(
f̂enc(D), fteacher(D)

)
, (6)

where f̂enc is a trainable encoder and fteacher is a pre-trained
vision model with frozen weights. We ablate the effect of the
auxiliary input in the experiments. The final feature rendering
loss is then given by

Lfeat =
∑
r∈R

∣∣∣∣∣∣F(r)− F̂(r)
∣∣∣∣∣∣2
2

(7)

where F is the reference ground-truth features obtained by
running foundation models on ground-truth novel views.
Compared to previous works that use view-dependent fea-
tures [14, 28], one strength of our training scheme is that
the encoded features are view-independent, which makes it a
favorable representation for downstream motion planners that
often require 3D information.

Model for Distillation. Our proposed feature distillation
method for scene-level generalizable NeRFs is generic and
can be applied to many 2D vision foundation models such as
Stable Diffusion [27], SAM [59], and DINO [26]. In this work,
however, since we are interested in tasking robots to perform
open-vocabulary mobile manipulation, we need to choose
a vision foundation model that is aligned with language.
Therefore, we choose MaskCLIP [63] as fteacher, which
is a variant of CLIP [13] that exploits a reparametrization
trick [63, 28] to transform the output of CLIP from a single
feature vector to a feature map aligned with the CLIP text
encoders. Though the 2D feature maps from MaskCLIP are
coarse (illustrated in Fig. 2), it is efficient enough to run at real
time on mobile robots and we show qualitatively that GeFF
learns to reconstruct fine details from multiple views.

Handling Language Query. Following standard proto-
cols [14, 28], GeFF takes in positive text queries along with
a few negative text queries (e.g., wall and ceiling). These
text queries are encoded using CLIP’s text encoders, which
send texts to an embedding space that is aligned with the
distill features. To rate the similarity of a coordinate with a
positive text query, we use cosine similarity to compute the
rendered feature with each text query. A temperatured softmax
is then applied to the cosine similarity to form a probability
distribution. Finally, we sum up the probabilities of positive
queries to formulate the similarity score.

Supervision (ii): Depth Supervision via Neural SDF.
Inspired by [18, 64, 61], we introduce a signed distance
network s(x) = ggeo(x, fenc(D)) to encode depth informa-
tion. Doing so has two advantages over previous work [11]:
1) it leverages depth information to efficiently resolve scale

ambiguity for building scene-level representation, rather than
restricted to object-level representation, and 2) it creates a
continuous implicit SDF surface representation, which is a
widely used representation for robotics applications such as
computing collision cost in motion planning [64].

To provide supervision for ggeo during pre-training, we fol-
low iSDF [64] and introduce an SDF loss Lsdf and an Eikonal
regularization loss [65] Leik to ensure smooth SDF values.
The main difference with iSDF [64] is that we condition ggeo
with fenc(D), which does not require optimization for novel
scenes. Instead of using a density network, we represent the
opacity function α in Eq. 1 using s(x)

α(r(t)) = MAX

(
σs(s(x))− σs(s(x+∆))

σs(s(x))
, 0

)
, (8)

where σs is a sigmoid function modulated by a learnable
parameter s. The depth along a ray r is then rendered by

D̂(r) =

∫ tf

tn

T (t)α(r(t))didt , (9)

where di is the distance from current ray marching position
to the camera origin. Similar to Eq. 2, the rendered depth can
be supervised via

Ldepth =
∑
r∈R

∣∣∣∣∣∣D(r)− D̂(r)
∣∣∣∣∣∣2
2
. (10)

Implementation Details. For a single posed RGB-D frame,
fenc follows existing works in 3D encoder [66, 67] and
encodes a single view to a 3D volume of shape RM×C . Here,
M = 512 is a set of sparse points obtained via the farthest
point sampling and C is the feature dimension of each point.
The obtained points are also transformed to the world frame
using camera intrinsics and extrinsics to build a consistent
world representation from multi-frame observations.

Features of these M points are obtained by using Point-
Cov [68] on the downsampled 3D points and interpolating
a dense feature map from a ResNet-50 [69] encoder. For a
specific point query in generalizable NeRF decoding, fenc
interpolates features from nearby K points. The decoders
gsem and ggeo are implemented as multi-layer MLPs. We will
release the code for details and reproducibility.

Final Training Objective. Combining all the above equa-
tions, the total loss we used to train fenc for a unified latent
scene representation is given by

L = λ1Lcol + λ2Ldepth + λ3Lsdf

+ λ4Leik + λ5Lfeat

(11)

where λi are hyperparameters used to balance loss scales.

B. Open-Vocabulary Mobile Manipulation

Scene Mapping with GeFF. As detailed in previous sec-
tions, GeFF encodes a single posed RGB-D frame to a latent
3D volume, which is represented as a sparse latent point cloud.
Since per-frame 3D latent volume is back-projected to the
world frame, we incrementally build the latent volume by con-
catenating per-frame observations. The camera pose used to
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Fig. 4: The mobile manipulation platform. A 7-DOF Z1
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construct GeFF is provided by an off-the-shelf Visual-Inertial
Odometry (VIO) method [70]. The latent 3D volume can then
be decoded into geometric and semantic representations.

Decoded Representations. Though GeFF supports decod-
ing to various representations, it is inefficient and impractical
to generate all possible representations on-the-fly. For this
work, we decode the latent representation into a point cloud
and an occupancy map as geometric representations for navi-
gation and manipulation. We then enhance basic units in these
representations (i.e., points and grid cells) with feature vectors
from gsem, which can be compared with language queries
encoded by the CLIP [13] text encoder. The comparison results
are per-point similarity scores with the higher-score responses
being the points more similar to the description in the language
instruction. For a visualization of the 3D map with score
responses, please refer to Fig. 7.

GeFF for Navigation. We consider the navigation of the
base quadrupedal robot as a 2D navigation problem due to the
compute constraints of the robot. The 2D occupancy grid map
which provides the traversability for navigation is downward
projected by decoded 3D point cloud. The feature vector for
each grid cell is created by averaging the feature vectors
of related points. The location with the most points, whose
feature vectors are top-k similar to the input language query,
is chosen as the goal location. To support semantic-aware
planning, we take in text queries of objects to avoid (e.g.,
lawn) and assign semantic affordances (i.e., cost to traverse
over a grid cell) to every grid cell using its similarity with the
avoiding objects. The robot then uses a cost-aware A∗ planner
to plan a set of waypoints to the goal location. We use a PD
controller to track these waypoints.

Note that since GeFF runs in real-time, the goal location
and obstacles are dynamically updated so that the robot can
react to scene changes on the fly, which leads to the robot’s
ability to avoid previously unseen obstacles and to find new
objects upon arriving at the specified receptacle. We evaluate
GeFF’s ability to handle scene change in V-D.

GeFF for Manipulation. After the robot arrives at the
coarse goal location on the map, it aggregates the semantic
point cloud decoded from GeFF with the same clustering
algorithm to refine the centroid of the object. We then adjust
the final pose of the robot base so that the centroid is
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Fig. 5: Overview of our mobile manipulation autonomy system
for navigation and manipulation.

within the configuration space of the end gripper of the robot
manipulator. The robot then attempts to grasp the object via
an open-push-close gripper action sequence with trajectories
computed by a sample-based planner (OMPL planner [71]) to
solve the Inverse Kinematic (IK) for the manipulator.

V. EXPERIMENTS

A. Experimental Setup

Real-world Evaluation. We deploy GeFF on a real robot
to evaluate the efficacy of GeFF in performing various tasks
such as open-vocabulary mobile manipulation and semantic-
aware planning. In addition to working with the real robot, we
also ablate design choices (e.g., whether auxiliary inputs are
used and teacher models) in simulation with Gazebo [72] and
Habitat [73]. For quantitative experiments, we task the robot
to perform mobile manipulation using language conditioning
in 3 environments: a 25 m2 lab with artificial obstacles, a
30 m2 meeting room with chairs and a big rectangular table,
and a 60 m2 community kitchen with various furniture. We
perform 3 trials on a total of 17 objects (6 miscellaneous
objects for the lab, 5 office-related items for the meeting
room, and 6 kitchen-related items for the kitchen) including 8
out-of-distribution categories that GeFF had not seen during
pre-training on ScanNet [60]. For qualitative experiments, we
test the robot’s ability to navigate with language-conditioned
semantic affordance, map the environment when a person
walks into the scene, builds intricate geometry from multiple
views, and entering narrow doorway.



Lab Env. Meeting Room Env. Kitchen Env. Overall

Method Latency Nav. Succ. Mani. Succ. Nav. Succ. Mani. Succ. Nav. Succ. Mani. Succ. Nav. Succ. Mani. Succ.

GeFF (Ours) 0.4s 94.4% 61.1% 86.7% 53.3% 66.7% 44.4% 82.6% 52.9%
GeFF no auxiliary 0.2s 55.6% 27.5% 60.0% 33.3% 38.9% 22.2% 51.5% 27.6%
LERF [14] 2 hrs 72.2% 44.4% 40.0% 20.0% 44.4% 27.8% 52.2% 30.7%

TABLE I: Mobile manipulation success rate categorized by navigation success rate (Nav. Succ.) and manipulation success rate
(Mani. Succ.) under different environments with different methods. Our method consistently outperforms baseline methods.
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Fig. 6: Communication system setup based on ROS

Experimental Protocol. For each environment, we first
manually drive the robot to explore the environment and
build an initial representation of the environment. This process
allows the robot to perceive the locations of fixed structures
(e.g., receptacles) and can be replaced by standard robotic ex-
ploration algorithms. During this process, the robot is agnostic
to the final goal category. Instead, GeFF allows the robot to
retrieve specific objects using language online. To make the
task setting realistic and to demonstrate the capability of GeFF
performing real-time mapping, we study a more challenging
task setting where there may be scene changes between the
initial mapping stage and the object retrieval stage.

Robotic Hardware Platforms. The hardware setup is
shown in Fig. 4. We use Unitree B1 as the base robot and
mount an Unitree Z1 arm on top of it. The robot is equipped
with a Microsoft Kinect RGBD sensor to provide depth for
GeFF, and an Intel RealSense D455 stereo camera to run VIO
to localize the robot for GeFF. The onboard computer is an
NVIDIA Jetson AGX Orin.

Metrics. Following protocols in existing work in mobile
manipulation [49, 9, 44], we use success rate as the main
evaluation metric. We define success for navigation as stopping
the navigation process when the robot is within 1m of its front-
facing goal object. We define success for mobile manipulation
as navigating and grasping the specified object, lifting it off
the surface, and holding it.

B. Autonomy System Overview

We use a modular approach and divide the autonomy system
into the perception, motion planning, and control modules,
which is illustrated in Fig. 5.

Method Scene Change Lab Meeting Rm. Kitchen

GeFF (Ours) ✗ 7/9 7/9 8/9
✓ 4/9 6/9 8/9

LERF [14] ✗ 6/9 7/9 4/9
✓ NA∗ NA∗ NA∗

TABLE II: Mobile manipulation success rate under scene
change, where objects are added to scenes after the robot
builds an initial map. The results are reported on three objects
(hand lotion, dog toy, and toy duck) over three trials per object.
Note that LERF [14] requires costly per-scene optimization
and thus can not handle scene change. Our method consistently
outperforms the baselines.

C. Communication System Setup

Based on ROS, we set up our communication system. We
use the Nvidia Orin as the main computer, an (optional)
Ubuntu 20.04 laptop as the base station to visualize the online
results and performance, and the onboard Nvidia XavierNX
of the robot as the side computer. We use the main computer
to perform all the computations for the autonomy system,
the base station to visualize the online results, and the side
computer to receive velocity commands to execute actions for
the robot base. The conversion from velocity commands to
motor commands is done by Unitree SDK. The Z1 manipulator
receives commands directly from the main computer. An
overview of our communication system is shown in Fig. 6.

D. Quantitative Results on Real Robot

We evaluate GeFF’s capability to help the robot perform
open-set mobile manipulation. Since previous mobile manip-
ulation methods either work on only a pre-defined set of
objects [49] or have a low success rate and require specialized
hardware [9], we use LERF [14], another feature field method,
as the main baseline method. Since LERF is an RGB-only
method with view-dependent features, we use metric poses
estimated by the same VIO algorithm to alleviate scale ambi-
guity and select the point with maximum responses in features
rendered from training views as the goal location. We evaluate
the success rate of navigation and mobile manipulation.

Open-Set Mobile Manipulation. We test the mapping
latency, navigation and manipulation success rates with a
total of 17 objects in 3 different environments. The results
are given in Tab. I. We compare a baseline method without
using auxiliary input shown in Eq. 6, as well as LERF [14].
Most methods show the highest success rates on both tasks
in the Lab, which is a controlled environment with consistent
lighting. On the other hand, Kitchen, a realistic scene with
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Fig. 7: Qualitative results of GeFF for diverse tasks. (a): using GeFF, the quadrupedal robot can build feature fields in real time,
which allows detection of passer-by in real time. (b): building high-quality feature fields from multi-frame inputs. (c): entering
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of the first-person GeFF features; similarity response of feature point clouds to positive text queries).

challenging lighting conditions and complex scene layouts,
poses challenges to all methods. Our method, GeFF augmented
with auxiliary foundation model input, consistently achieves
the best performance across all task settings.

Open-Set Mobile Manipulation with Scene Change. One
notable characteristic of generalizable neural fields is that they
do not require costly per-scene optimization. This is a desirable
property for robotics applications, as we want robots to be able
to respond to scene changes on the fly. In this part, we evaluate
the performance of GeFF for open-set mobile manipulation
where objects are added to the scenes after initial mapping.
Specifically, we put objects on tables after the initial mapping
stage. With new objects and language descriptions, the robot
should be able to find the new objects, navigate to them, and
then grasp them. We use a subset of objects from the main
experiments and test the mobile manipulation success rates
under three environments. Tab. II shows the results of open-
set mobile manipulation with scene changes. LERF [14], being
a conventional feature field method, requires costly per-scene
optimization and is not applicable to online response to scene
changes. On the other hand, our method, GeFF, successfully
copes with scene changes.

E. Qualitative Results on Real Robot

In this section we provide qualitative results of GeFF to
demonstrate different potential applications. In Fig. 7, we show
qualitative results of dynamic obstacle avoidance ability in
the lab environment, localizing objects with good geometric
reconstruction by fusing multiple views, ability to go through
a narrow doorway, and semantic-aware planning to avoid
terrains that the robot should semantically avoid.

Dynamic Obstacle Avoidance. We first construct the map
and while the robot moves toward the goal object, one person
comes in front of the robot. From the first sub-figure in
the 3rd row of Fig. 7 (a), we notice that GeFF recognizes
people and can assign higher affordances in real time, which
is challenging for per-scene optimization feature fields such
as LERF [14].

Intricate Geometry. GeFF is capable of fusing features
from multi-views to create a fine-grained semantic representa-
tion than a single-view projection. Illustrated in Fig. 7 (b)
and Fig. 8, we demonstrate clear semantic and geometric
boundaries from reconstructed objects.

Narrow Passage. Since GeFF can produce a fine-grained
scene representation, it allows the robot to pass through a
narrow doorway without collisions in the meeting room. This
result is illustrated in Fig 7 (c).
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Fig. 8: GeFF fuses low-resolution coarse 2D features from
multiple views for refinement. (a) A single RGB view of the
object. (b) coarse 2D heatmap with text query ‘toy duck’ by
CLIP [13]. (c) 3D heatmap from GeFF with clean and sharp
object boundary. (Best viewed when zoomed in.)
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Fig. 9: Snapshots of the simulation environments and objects
we use in our experiment. From this figure we are able to
see the large domain gap between real-world and simulation,
yet our method is able to handle the objects in simulation
successfully.

Semantic-aware Planning. It is natural to integrate se-
mantic affordances with the feature-enhanced point cloud and
occupancy map provided by GeFF. In Fig. 7 (d), we test the
capability of GeFF in an outdoor scene. With the traversability
of the quadrupedal robot, the robot can directly step over lawn
towards the goal object. However, it may be undesirable for
robots to step on lawns. Therefore, we assign higher semantic
affordances for grass surface, which encourages the robot to
stay on the walkways.

F. Ablation Studies in Simulation

We use Gazebo [72] and Habitat [73] with OVMM extended
data [73, 9] as our simulators. We use two environments (office
and warehouse) with 8 objects in Gazebo, and use 7 scenes
with 31 objects in Habitat. We also test the results with scene
change in Gazebo. The scene change mainly consists of two
categories: (1) adding dynamic obstacles and (2) add new
target object. We use large objects such as bookshelf and big
box to test the obstacle avoidance ability. We also test small-
size objects like soda to indicate the open-set ability of GeFF.
The results are shown in Tabs. III and IV.

We notice that the full GeFF with auxiliary inputs con-
sistently outperforms the no auxiliary input version, which
confirms the necessity of using foundation models during
inference time. In addition, given perfect camera poses and
depth, the success rate of goal localization and navigation are

GeFF (Ours) GeFF no aux.
Env. Scene Change Goal Succ. Nav. Succ. Goal Succ. Nav. Succ.

Office ✗ 100.0% 75.0% 66.7% 25.0%
✓ 75.0% 66.7% 63.6% 8.3%

Warehouse ✗ 88.9% 66.7% 66.7% 44.4%
✓ 88.9% 77.8% 66.7% 33.3%

Overall ✗ 94.4% 70.8% 66.7% 34.7%
✓ 81.3% 72.2% 65.2% 20.8%

TABLE III: We compare with the baseline method without
auxiliary (aux.) inputs of GeFF encoder. We evaluate the
success rate of finding goal objects (Goal Succ.) as well as
navigation success rate (Nav. Succ.). Note that in warehouse
with scene change the navigation performs slightly better. This
is due to the robot hit on the rack once while navigating and
the case may happen when there are changes in scenes too.

Distill. Model DinoV2 [26] CLIP-Text [13] CLIP-Image [13]

Nav. Succ. 67.6% 10.8% 27.0%

TABLE IV: Open-set object navigation results on habitat. We
perform ablation study by distilling different vision foundation
models.

good even when there is scene change, which identify the
bottleneck for GeFF in real world as the localization accuracy
and depth quality. In addition, we notice that the choice
of vision foundation models matters. We use DinoV2 [26],
which generates feature maps with higher resolution but is
not aligned with languages, for goal navigation on Habitat.
The feature of the goal object is specified using an image
where DinoV2 [26] averages goal object features. For the
Habitat OVMM dataset [9], DinoV2 shows good sucess rate,
which hints future research to fuse features from multiple
foundation models for GeFF. However, as illustrated in Fig. 9,
the simulation environment has a large domain gap from
real-world data. Therefore, in habitat, GeFF using CLIP and
queried with text demonstrates unsatisfactory performance in
finding goal objects.

G. Failure Analysis

We perform an in-depth analysis of failure cases to facilitate
future research. Perception failure, including both the failure to
precisely determine objects’ goal locations or the inability to
localize the robot, is the critical factor that leads to navigation
failure in complex scenes (i.e., kitchen). In challenging lighting
conditions, such as the kitchen where the spotlights may
directly illuminate the localization camera, the VIO algorithm
could be inaccurate due to its internal assumption of consistent
lighting. This leads to imprecise world representation and
undesired errors when solving inverse kinematics for manip-
ulation. Future work could improve this by either 1) using an
in-hand camera for manipulation or 2) designing a high-level
policy that does not rely on accurate camera poses over the
long horizon.

Besides perception failures, the manipulation also some-
times fails due to the current open-loop manipulation scheme,
especially the end effector of the Z1 arm often fails on low-
friction objects (e.g., plastic drink bottles). Future work could



include transforming the current manipulation solution to a
close-loop system.

Failure Analysis in Scene Change. Scene changes pose
unique challenges to perception. Though we can instruct the
robot to navigate to furniture to map and manipulate new
objects, the robot obtains only a single view of the object,
which may lead to inaccurate representation unlike Fig. 8.
Future work could design an exploration policy that attempts to
automatically obtain multi-views of the object or learn priors
for shape completion.

VI. CONCLUSION

In this paper, we present GeFF, a scene-level generaliz-
able neural feature field with feature distillation from VLM
that provides a unified representation for robot navigation
and manipulation. Deployed on a quadrupedal robot with
a manipulator, GeFF demonstrates zero-shot object retrieval
ability in real-time in real-world environments. Using common
motion planners and controllers powered by GeFF, we show
competitive results in the open-set mobile manipulation tasks.

A promising future direction that may potentially address
both issues is to learn a unified control policy on top of
GeFF features to close the control loop, which can address
the aforementioned failure reasons.
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